232 research outputs found

    WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    Full text link
    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schr\"odinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry.The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry.The present Part I deals with the description of closed quantum systems in terms of Schr\"odinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization.The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics.The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found

    Theory and Modelling of Ultrafast X-ray Imaging of Dynamical Non-equilibrium Systems

    Get PDF

    Theoretical Constraints and Systematic Effects in the Determination of the Proton Form Factors

    Get PDF
    We calculate the two-photon exchange corrections to electron-proton scattering with nucleon and Δ\Delta intermediate states. The results show a dependence on the elastic nucleon and nucleon-Δ\Delta-transition form factors used as input which leads to significant changes compared to previous calculations. We discuss the relevance of these corrections and apply them to the most recent and precise data set and world data from electron-proton scattering. Using this, we show how the form factor extraction from these data is influenced by the subsequent inclusion of physical constraints. The determination of the proton charge radius from scattering data is shown to be dominated by the enforcement of a realistic spectral function. Additionally, the third Zemach moment from the resulting form factors is calculated. The obtained radius and Zemach moment are shown to be consistent with Lamb shift measurements in muonic hydrogen.Comment: minor changes, added references, version to appear in PR

    The perfect crime? : CCSVI not leaving a trace in MS

    Get PDF
    Background: Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system, believed to be triggered by an autoimmune reaction to myelin. Recently, a fundamentally different pathomechanism termed ‘chronic cerebrospinal venous insufficiency’ (CCSVI) was proposed, provoking significant attention in the media and scientific community. Methods: Twenty MS patients (mean age 42.2±13.3 years; median Extended Disability Status Scale 3.0, range 0–6.5) were compared with 20 healthy controls. Extra- and intracranial venous flow direction was assessed by colour-coded duplex sonography, and extracranial venous cross-sectional area (VCSA) of the internal jugular and vertebral veins (IJV/VV) was measured in B-mode to assess the five previously proposed CCSVI criteria. IJV-VCSA≤0.3 cm2 indicated ‘stenosis,’ and IJV-VCSA decrease from supine to upright position ‘reverted postural control.’ The sonographer, data analyser and statistician were blinded to the patient/control status of the participants. Results: No participant showed retrograde flow of cervical or intracranial veins. IJV-VCSA≤0.3 cm2 was found in 13 MS patients versus 16 controls (p=0.48). A decrease in IJV-VCSA from supine to upright position was observed in all participants, but this denotes a physiological finding. No MS patient and one control had undetectable IJV flow despite deep inspiration (p=0.49). Only one healthy control and no MS patients fulfilled at least two criteria for CCSVI. Conclusions: This triple-blinded extra- and transcranial duplex sonographic assessment of cervical and cerebral veins does not provide supportive evidence for the presence of CCSVI in MS patients. The findings cast serious doubt on the concept of CCSVI in MS

    Online railway delay management: Hardness, simulation and computation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Delays in a railway network are a common problem that railway companies face in their daily operations. When a train is delayed, it may either be beneficial to let a connecting train wait so that passengers in the delayed train do not miss their connection, or it may be beneficial to let the connecting train depart on time to avoid further delays. These decisions naturally depend on the global structure of the network, on the schedule, on the passenger routes and on the imposed delays. The railway delay management (RDM) problem (in a broad sense) is to decide which trains have to wait for connecting trains and which trains have to depart on time. The offline version (i.e. when all delays are known in advance) is already NP-hard for very special networks. In this paper we show that the online railway delay management (ORDM) problem is PSPACE-hard. This result justifies the need for a simulation approach to evaluate wait policies for ORDM. For this purpose we present TOPSU—RDM, a simulation platform for evaluating and comparing different heuristics for the ORDM problem with stochastic delays. Our novel approach is to separate the actual simulation and the program that implements the decision-making policy, thus enabling implementations of different heuristics to ‘‘compete’’ on the same instances and delay distributions. We also report on computational results indicating the worthiness of developing intelligent wait policies. For RDM and other logistic planning processes, it is our goal to bridge the gap between theoretical models, which are accessible to theoretical analysis, but are often too far away from practice, and the methods which are used in practice today, whose performance is almost impossible to measure.EU/FP6/021235-2/EU/Algorithms for Robust and on-line Railway optimisation: Improving the validity and reliability of large-scale systems/ARRIVA

    Designing a Feedback Control System via Mixed-Integer Programming

    Get PDF
    Pure analytical or experimental methods can only find a control strategy for technical systems with a fixed setup. In former contributions we presented an approach that simultaneously finds the optimal topology and the optimal open-loop control of a system via Mixed Integer Linear Programming (MILP). In order to extend this approach by a closed-loop control we present a Mixed Integer Program for a time discretized tank level control. This model is the basis for an extension by combinatorial decisions and thus for the variation of the network topology. Furthermore, one is able to appraise feasible solutions using the global optimality gap

    Opponent-Pruning Paranoid Search

    Get PDF
    This paper proposes a new search algorithm for fully observable, deterministic multiplayer games: Opponent-Pruning Paranoid Search (OPPS). OPPS is a generalization of a state-of-the-art technique for this class of games, Best-Reply Search (BRS+). Just like BRS+, it allows for Alpha-Beta style pruning through the paranoid assumption, and both deepens the tree and reduces the pessimism of the paranoid assumption through pruning of opponent moves. However, it introduces

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal
    corecore